

DAKOTA/UQ: A Toolkit For Uncertainty Quantification in a Multiphysics, Massively Parallel Computational Environment

Steven F. Wojtkiewicz

sfwojtk@sandia.gov

Structural Dynamics Research, Dept. 9124 Sandia-Albuquerque

LANL Uncertainty Quantification Working Group

October 4, 2001

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Uncertainty Quantification

Engineering Sciences Center

Real Physical Systems:

- •Display random and systematic variation- geometry, materials, boundary conditions, initial conditions, excitations
- Vary from one realization to the next
- Display behavior that cannot be precisely measured

Uncertainty occurs in various forms:

- •Irreducible, variability, aleatoric
- •Reducible, epistemic, subjective, model form uncertainty

Uncertainty Quantification

Engineering Sciences Center

Useful in:

Analysis and Design

- -To assess the reliability of physical systems.
- -To establish designs that satisfy pre-established reliability requirements.
- -To establish sensitivities to key uncertainties
- Model validation, certification, and accreditation
 - -As defined in the DOE Defense Programs (DOE/DP) ASCI Program Plan, validation is the process of determining the degree to which a computer model is an accurate representation of the real world from the perspective of the *intended model applications*.
 - Convey confidence in predictions to decision makers

Uncertainty Quantification: General Framework

Engineering Sciences Center

General Description:

X: vector of uncertain parameters

M: a deterministic mapping

U: output(s) of system

f: input(s) to system

Statistical Approach:

- Model components of X as Random Variables or Fields, and f as (possibly) Random External Input
- Seek quantities such as $E[g(\mathbf{U})]$. However, what is actually obtained are *conditional* statistics $E[g(\mathbf{U})|M]$.

Probabilistic/Statistical Approach: Essential Elements of a Statistical Approach:

Engineering Sciences Center

Conclusion: Need a Generalized Outlook.

Essential Elements of a Statistical Approach:

- Random External Inputs
- Propagation Techniques

 Analytical Reliability Methods; Sampling; Response Surface Approximations; Stochastic Finite Element Methods.

Characterization of Models

-Verification and Validation.

Engineering Sciences Center

Uncertainty due to External Loads: (f)

- Random Vibration
- Earthquake Engineering
- Ocean Engineering
- Weapons Applications: Launch Shocks/Re-entry Loads, **Penetration Loads, Hostile Environments**

Uncertainty Propagation:(X)

- Effects of parametric uncertainty: Intrinsic variabilities, Tolerances, Lack of repeatability

Uncertainty Quantification at Sandia-NM

Engineering Sciences Center

- DAKOTA (Design Analysis Kit for OpTimizAion)/UQ
 - -Framework for multi-level, parallel computation: ASCI-level problems, optimization, nondeterministic analysis, response surface approximation, design of experiments, optimization under uncertainty
- Polynomial Chaos and Stochastic Finite Elements
 - Analysis of response of stochastic systems
- Epistemic Uncertainty
 - -Non-Probabilistic Approach, Probabilistic Approach, Model Uncertainty
- Sensitivity Analysis

Objectives of Toolkit

Engineering Sciences Center

Provide uncertainty quantification tools to the analyst community in a unified framework to be used in the design and certification processes.

- Discipline independent
- ASCI (Accelerated Strategic Computing Initiative)-scale problems
- Minimize number of function evaluations
- Flexibility in uncertainty model

Why tie UQ tools to the DAKOTA framework?

- Existing, proven software framework
- Successfully linked with over 20 application codes
- Multilevel parallelism
- Extensive optimization algorithm library (gradient and non-gradient)
- Extensive selection of approximation strategies

DAKOTA toolkit Design optimization of engineering applications

Engineering Sciences Center

Answer fundamental engineering questions:

- · What is the best design?
- How safe is it?
- How much confidence in my answer

Additional motivations:

- Reuse tools and interfaces
- Leverage optimization, UQ, et al.
- Nonconvex, nonsmooth design spaces → state-of-the-art methodologies
- ASCI-scale applications and architectures ightarrow scalable parallelism
- Be a pathfinder in enabling M&S-based culture change at Sandia

Overview of DAKOTA framework

Engineering Sciences Center

Optimization/UQ Projects

Engineering Sciences Center

DAKOTA project (optimization with engineering simulations):

Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845-7471

PI - Mike Eldred, 9211, mseldre@sandia.gov, 844-6479

Team members - Tony Giunta, Bill Hart, Bart van Bloemen Waanders

http://endo.sandia.gov/DAKOTA/

DAKOTA/UQ project (analytic reliability, sampling, and SFE UQ library):

Sandia manager - Martin Pilch, 9133, mpilch@sandia.gov, 845-3047

PI - Steve Wojtkiewicz, 9124, sfwojtk@sandia.gov, 284-5482

Team members - Mike Eldred, Rich Field, John Red-Horse, Angel Urbina

SGOPT project (stochastic global optimization):

Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845-7471

PI - Bill Hart, 9211, wehart@cs.sandia.gov, 844-2217

http://www.cs.sandia.gov/~wehart/main.html

PICO project (mixed integer programming, scheduling and logistics):

Sandia manager - David Womble, 9211, dewombl@cs.sandia.gov, 845-7471

PI - Cindy Phillips, 9211, caphill@cs.sandia.gov, 845-7296

Team members - Bob Carr, Jonathan Eckstein (Rutgers), Bill Hart, Vitus Leung http://www.cs.sandia.gov/~caphill/proj/pico.html

OPT++/DDACE/APPS/IDEA projects (NLP, sampling, & pattern search libraries):

Sandia manager - Chuck Hartwig(acting), 8950, hartwi@ca.sandia.gov

PI - Juan Meza, 8950, meza@ca.sandia.gov, 294-2425

Team members - Paul Boggs, Patty Hough, Tamara Kolda, Leslea Lehoucq,

Kevin Long, Monica Martinez-Canales, and Pam Williams

http://csmr.ca.sandia.gov/~meza/research.html

Current Dakota/UQ Capabilities

Engineering Sciences Center

Sampling Techniques:

- Random Sampling (Monte Carlo)
- Stratified Sampling (LHS (Latin Hypercube Sampling)

Analytical Reliability Techniques:

- Mean Value (MV), Advanced Mean Value (AMV/AMV+)
- FORM (First Order Reliability Method)/SORM (Second Order Reliability Method)

Robustness Analysis

Stochastic Finite Element/Polynomial Chaos Expansions

Response Surface Approximations:

 Application of UQ tools to a surrogate function to minimize computational expense.

Sampling Techniques

Engineering Sciences Center

Monte Carlo-Style (Sampling-based) Analysis:

- General, simple to implement and robust to size and discipline of problem being investigated
- Easily wrapped around current deterministic analysis capabilities
- Computationally expensive (many function evaluations)
- Two current options:
 - -Traditional Monte Carlo
 - -Latin Hypercube Sampling
- Under investigation:
 - -Bootstrap Sampling
 - -Importance Sampling Techniques
 - -Quasi-Monte Carlo SImulation
 - -Markov Chain Monte Carlo

Overview of Analytically Based Reliability Methods

Engineering Sciences Center

- Involve a transformation to unit variance, uncorrelated normal random variable space.
- Nataf Transformation used in DAKOTA/UQ.
- MV, AMV/AMV+, FORM all solve a constrained optimization problem where the objective function is always this minimum distance function with the constraint function depending on the method.
- MV and AMV/AMV+ work in the original random variable space.
- FORM/SORM work in the transformed space.
- Equivalent to Polynomial Response Surface Techniques about an "optimally" selected expansion point

Probabilistic Robustness Analysis

Engineering Sciences Center

- "Given the bounds on the input parameters, what range of output function is possible?"
- Pose two global optimization problems:

$$g_{upper} = \max_{\mathbf{x}} g(M(f, \mathbf{x}))$$

$$g_{lower} = \min_{\mathbf{x}} g(M(f, \mathbf{x}))$$

such that

$$(x_i)_L \le x_i \le (x_i)_U \quad \forall \quad i = 1...N$$

where N is the size of uncertain input vector, denote \mathbf{x}_L and \mathbf{x}_U its lower and upper bounds, respectively.

Probabilistic Robustness Analysis

Engineering Sciences Center

Answer:

$$g(\mathbf{u}) \in [g_{lower}, g_{upper}]$$

 Recently extended to mixed case of intervals and random variables of unknown dependence (to appear in Wojtkiewicz, AIAA SDM 2002)

SFEM/Polynomial Chaos Techniques

Engineering Sciences Center

- Approximation of full stochastic representation
- Optimal approximation in inner product spaces, ${\cal L}_2$ space of random variables.
- Represents a more general alternative to the Rosenblatt transformation
 - -avoid assuming full distribution when faced with limited input data
- Estimating coefficients is the key issue
 - -requires realizations of the function it replaces
- Convergence issues
 - -are there sufficient samples to compute coefficients?
 - -possibility of non-physical realizations
 - -mean square convergence

SFEM/Polynomial Chaos Techniques

Engineering Sciences Center

•Consider PCE of general random process, u

$$u(x;\Phi) \approx u(x;\Phi)^{(P)} \equiv \sum_{i=0}^{P} u_i(x) \Gamma_i(\underline{\xi}), \text{ where } P = \sum_{s=1}^{q} \frac{1}{s!} \left\{ \prod_{r=0}^{s-1} (m+r) \right\}$$

- -q th order polynomial in $\underline{\xi}$, where $\underline{\xi} = \begin{bmatrix} \xi_1 & \xi_2 & \dots & \xi_m \end{bmatrix}^T$
- –function of *m* underlying random variables
- •Solve for the Fourier coefficients, $u_i(x)$

$$u_i(x) = \frac{\langle u(x, h[\xi]) \ \Gamma_i(\xi) \rangle}{\langle \Gamma_i^2(\xi) \rangle} = \frac{\int\limits_{-\infty - \infty}^{\infty} \dots \int\limits_{-\infty}^{\infty} u(x, h[\xi]) \ \Gamma_i(\xi) f_{\xi}(\xi) d\xi}{\int\limits_{-\infty - \infty}^{\infty} \dots \int\limits_{-\infty}^{\infty} \Gamma_i^2(\xi) f_{\xi}(\xi) d\xi} = \frac{n_i(x)}{\delta_i(x)}$$

 $\delta_i(x)$ can be solved in closed-form

Epistemic Uncertainty

Engineering Sciences Center

- •Epistemic Uncertainty results from a lack of information.
- Epistemic Uncertainty manifests itself in several ways
 - Uncertainty in parameters for which statistically significant databases do not exist
 - -The form of the model is not known exactly

Non-Probabilistic Approach

- Variety of approaches investigated:
 - -Interval analysis
 - –Possibility Theory
 - -Evidence Theory (Dempster-Shafer)
 - -Imprecise Probability
 - –Probability Bounds
 - -Interval-valued Probability Distributions
 - -Convex Sets of Probability Distributions

The Penetrator Problem

Engineering Sciences Center

Problem statement

–During the penetration event, predict the probability of component failure, \boldsymbol{P}_f

-Consider a nonlinear, full-body, 3D, coupled-physics simulation with simplified probabilistic properties.

The model, M: a complex, cascaded system

Overview of the Shock Response Spectrum (SRS)

Engineering Sciences Center

Why use SRS?

- •measure of shock severity; indicative of shock damage potential
- •frequency-domain representation of shock response
- •long history of use in weapon design; test-based spec
- •used for component qualification compare to $\mathit{SRS}_\mathit{ref}$

UQ analysis of Penetrator System

Engineering Sciences Center

Two design variables, X:

- $-\alpha$, angle of attack is a normal random variable with mean 1 and standard deviation of 1.
- -D, soil depth is a lognormal random variable with mean 25 and standard deviation 16.

$$\bar{u} = \min_{i} (SRS_{ref}(f_i) - SRS(f_i))$$

$$Z = g(\overline{U}) = I(\overline{U})$$

$$P_f = P(Z \le 0) = 1 - E[g(\overline{U})]$$

Using the results from simulations, build a approximate model

(response surface approximation) for \overline{u} .

UQ analysis of Penetrator System

Engineering Sciences Center

• Apply MC/LHS to these surrogate models to evaluate ${\cal F}_Z(0)$:

$$N_s = 1 \times 10^4 \text{ and } N_s = 5 \times 10^6$$

Response Surface Approximation Method	MC	LHS
Kriging	0.02000/0.02300	0.02000/0.02400
Splines	0.06900/0.06781	0.06720/0.06767
Neural Net	0.05024/0.05588	0.05500/0.05581
Quadratic Polynomial	0.04960/0.05077	0.05070/0.05071

Summary

Engineering Sciences Center

Current Capabilities

Analytical Reliability Techniques:

•MV, AMV, AMV+, FORM/SORM

Sampling techniques:

- Pure Random Sampling (Monte Carlo)
- Stratified Sampling (LHS)

Probabilistic Robustness Analysis

Polynomial Chaos Expansions/Stochastic Finite Element Techniques

Future Capabilities:

Enhanced sampling methods:

•Importance Sampling, Bootstrap Sampling,

Quasi-Monte Carlo Sampling, Markov Chain Monte Carlo Sampling

Non-traditional uncertainty methodologies